Determination of the M_r of an Unknown Solid Acid using Titration (3A/ABT)

Sam White

31/10/2017

1 Aim

To determine the M_r of an unknown solid acid (A) using a titrimetric method of analysis.

2 Results and Analysis

Batch of HCl used : B

Concentration of HCl: $0.1029 \,\mathrm{mol}\,\mathrm{dm}^{-3}$

Batch of NaOH Used : B

2.1 Titration between NaOH and HCl

$$HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$$
 (2.1.1)

Phenolphthalein was used as the indicator (colour change from pink to colourless at the end point).

Table 1: Results from titrating 25.00 cm³ of NaOH with HCl.

Run	Start Volume / cm ³	End Volume / cm ³	Titre $/ \text{ cm}^3$
1	6.60	30.95	24.35
2	2.00	25.85	23.85
3	4.20	28.30	24.10
4	4.45	28.55	24.10

$$\text{Average titre} = \frac{24.10\,\text{cm}^3 + 24.10\,\text{cm}^3}{2} = 24.10\,\text{cm}^3$$

Moles of HCl in titre =
$$24.10 \,\mathrm{cm}^3 \times (\frac{1 \,\mathrm{dm}}{10 \,\mathrm{cm}})^3 \times 0.1029 \,\mathrm{mol} \,\mathrm{dm}^{-3}$$

= $24.10 \times 10^{-3} \,\mathrm{dm}^3 \times 0.1029 \,\mathrm{mol} \,\mathrm{dm}^{-3}$
= $2.480 \times 10^{-3} \,\mathrm{mol}$

From equation 2.1.1 there is a 1:1 molar ratio between HCl and NaOH.

∴ Moles of NaOH in
$$25.00 \, \mathrm{cm}^3 = 2.480 \times 10^{-3} \, \mathrm{mol}$$

Concentration of NaOH = $\frac{2.480 \times 10^{-3} \, \mathrm{mol}}{25.00 \, \mathrm{cm}^3 \times (\frac{1 \, \mathrm{dm}}{10 \, \mathrm{cm}})^3}$
= $\frac{2.480 \times 10^{-3} \, \mathrm{mol}}{25.00 \times 10^{-3} \, \mathrm{dm}^3}$
= $0.099 \, 20 \, \mathrm{mol} \, \mathrm{dm}^{-3}$

2.2 Titration between NaOH and Unknown Acid A

For HA being the unknown acid A and assuming HA is monobasic:

$$HA(aq) + NaOH(aq) \longrightarrow NaA(aq) + H_2O(1)$$
 (2.2.1)

Phenolphthalein was used as the indicator (colour change from pink to colourless at the end point).

A mass of 1.8525 g of HA was dissolved with distilled water in a 200.00 cm³ volumetric flask.

Average titre =
$$\frac{20.10 \,\text{cm}^3 + 20.15 \,\text{cm}^3}{12} = 20.13 \,\text{cm}^3$$

Table 2: Results from titrating $20.00\,\mathrm{cm}^3$ of NaOH with HA.

8				
Run	Start Volume / cm ³	End Volume / cm ³	Titre $/ \text{ cm}^3$	
1	4.00	24.90	20.90	
2	4.00	24.10	20.10	
3	4.05	24.20	20.15	

Moles of NaOH in
$$20.00\,\mathrm{cm^3}$$
 aliquot = $20.00\,\mathrm{cm^3} \times (\frac{1\,\mathrm{dm}}{10\,\mathrm{cm}})^3 \times 0.099\,20\,\mathrm{mol\,dm^{-3}}$
= $20.00\times 10^{-3}\,\mathrm{dm^3}\times 0.099\,20\,\mathrm{mol\,dm^{-3}}$
= $1.984\times 10^{-3}\,\mathrm{mol}$

From equation 2.2.1 there is a 1:1 molar ratio between NaOH and HA.

∴ Moles of HA in
$$20.13 \,\mathrm{cm}^3 = 1.984 \times 10^{-3} \,\mathrm{mol}$$

Concentration of HA = $\frac{1.984 \times 10^{-3} \,\mathrm{mol}}{20.13 \,\mathrm{cm}^3 \times (\frac{1 \,\mathrm{dm}}{10 \,\mathrm{cm}})^3}$

= $\frac{1.984 \times 10^{-3} \,\mathrm{mol}}{20.13 \times 10^{-3} \,\mathrm{dm}^3}$

= $0.09855 \,\mathrm{mol} \,\mathrm{dm}^{-3}$

Hence for the whole 200.00 cm³ volumetric flask:

of the HA =
$$0.09855 \,\text{mol}\,\text{dm}^{-3} \times 200.00 \,\text{cm}^3 \times (\frac{1 \,\text{dm}}{10 \,\text{cm}})^3$$

= $0.09855 \,\text{mol}\,\text{dm}^{-3} \times 200.00 \times 10^{-3} \,\text{dm}^3$
= $0.01971 \,\text{mol}$

Since:

Amount mol =
$$\frac{\text{Mass g}}{M_r \text{ g mol}^{-1}}$$

 $M_r \text{ g mol}^{-1} = \frac{\text{Mass g}}{\text{Amount mol}}$

Hence:

$$M_r \text{ of HA} = \frac{1.8525 \,\mathrm{g}}{0.01971 \,\mathrm{mol}} = 93.98 \,\mathrm{g} \,\mathrm{mol}^{-1}$$