Preparation of Pear Essence (Propyl Acetate) (7A/PPE)

Sam White

07/11/2017

1 Reaction Mechanism¹ and Overall Equation

Figure 1: Mechanism for reaction

Figure 2: Overall Equation for Reaction

2 Results and Analysis

Boiling temperature of pure product: $101\,^{\circ}\mathrm{C}$

Mass of pure product: $4.43\,\mathrm{g}$

2.1 Yield Calculation

Moles of propan-1-ol at start of reaction =
$$\frac{9.6 \text{ g}}{(3(12.011) + 8(1.008) + 15.999) \text{ g mol}^{-1}}$$
$$= \frac{9.6 \text{ g}}{60.096 \text{ g mol}^{-1}} = 0.16 \text{ mol}$$
Moles of acetic acid at start of reaction =
$$\frac{24 \text{ g}}{(2(12.011) + 4(1.008) + 2(15.999)) \text{ g mol}^{-1}}$$
$$= \frac{24 \text{ g}}{60.052 \text{ g mol}^{-1}} = 0.40 \text{ mol}$$

From the equation shown in figure 2 there is a 1:1 molar ratio between propan-1-ol and acetic acid, hence the acetic acid is in excess. The equation also shows a 1:1 molar ratio between the propan-1-ol and propyl acetate, hence the theoretical amount of propyl acetate produced is 0.16 mol.

∴ Theoretical yield of propyl acetate = $0.16 \text{ mol} \times (5(12.011) + 10(1.008) + 2(15.999)) \text{ g mol}^{-1}$ = $0.16 \text{ mol} \times 102.133 \text{ g mol}^{-1} = 16 \text{ g}$ ∴ Percentage yield = $\frac{4.43 \text{ g}}{16 \text{ g}} \times 100\% = 27\%$

¹David Klein. Organic Chemistry. 2nd ed. Wiley, 2015, Preparation of Esters, p. 1014.

This is quite low. This may be due to losses during the purification (e.g. containers were not washed after transfers and some product remained in the filter paper) and a consequence of the reversible nature of the reaction.

2.2 Spectra

Table 1. In Spectrum of propan-1-of.			
Wavenumber $/ \text{ cm}^{-1}$	Strength	Assignment	
2976.7	Weak	CH_3 Absorption	
2936.0	Weak	$C-H_2$ Absorption	
2962.3	Weak	$C-H_3$ Absorption	
3319.0	Weak and Broad	O–H Absorption in Alcohol	

Table 1. IB Spectrum of propan-1-ol

Table 2: ¹H NMR Spectrum of propan-1-ol.

Chemical Shift / ppm	J-Coupling	Integral Area	Summary
Approx. 7.3	Singlet	Not Integrated	Characteristic for $CDCl_3$ (Solvent)
3.66	Triplet	0.99	Two α -protons to alcohol group. Coupled to two protons.
2.03	Singlet	3.00	OH proton. Exchange decoupled.
1.57	Quintat (Uncloar)	(Integrated	Additional splitting possibly obscured by adjacent peaks.
1.07	Quintet (Onclear)	together)	Coupled to four or five protons.
1.00	Triplet (Small right-hand peak)		Coupled to two protons.

Table 3: IR Spectrum of acetic acid.

Wavenumber / $\rm cm^{-1}$	Strength	Assignment
1703.9	Strong	C=O Absorption close to acid range $(1725-1705 \text{ cm}^{-1})$
3032.6	Weak and Broad	O-H Absorption close to carboxylic acid range (3000-2500 cm ⁻¹)

Table 4: ¹H NMR Spectrum of acetic acid.

Chemical Shift / ppm	J-Coupling	Integral Area	Summary	
10.67	Singlet	0.90	Single proton in –COOH group. Exchange decoupled.	
Approx. 7.4	Singlet	Not Integrated	Characteristic for $CDCl_3$ (Solvent).	
2.19	Singlet	3.00	Three α -protons to carboxyl group.	

Table	5:	IR.	Spectrum	of Product.
Table	υ.	110	spectrum	or i rouuco.

1		
Wavenumber / $\rm cm^{-1}$	Strength	Assignment
1738.0	Strong	C=O Absorption in the ester range $(1740-1710 \text{ cm}^{-1})$
2882.5	Weak	C–H Absorption
2970.5	Weak	C–H Absorption

Table 6: ¹H NMR Spectrum of Product

Table 6. If thirt spectrum of Florado.				
Chemical Shift / ppm	J-Coupling	Integral Area	Summary	
Approx. 7.4	Singlet	0.030	Characteristic for $CDCl_3$ (Solvent)	
4.14	Triplet	1.98	Two protons (RCOO $-CH$). Coupled to two protons.	
2.17	Singlet	3.28	Three protons in unique environment	
Approx. 1.8	Quartet (Unclear)	1.90	Two protons coupled three or four protons: splitting	
			pattern difficult to interpret.	
1.06	Triplet (Small right-hand peak)	2.75	Three protons coupled to two protons.	

These spectra are consistent with propyl acetate as a product since the starting materials both had a broad peak corresponding to O-H absorptions in their IR spectra, however this is absent in the product's IR spectrum. Also the NMR spectrum for the product shows it has four distinct hydrogen environments with the expected chemical shifts and (mostly) the expected splitting pattens for propyl acetate. In the IR spectra the C=O absorption has shifted position from being at $1703.9 \,\mathrm{cm}^{-1}$ in acetic acid to $1738.0 \,\mathrm{cm}^{-1}$ in the product: this higher wavenumber is expected for the production of an ester.