## Experiment 4B: The rotational-vibrational spectrum of HCl

Sam White (Author) and Emma Winful (Laboratory Partner)

$$
30 / 11 / 2018
$$


#### Abstract


Experiment abstract.

## 1 Results and Analysis

### 1.1 Collected Data

Table 1: Rotational absorbances for the fundamental transition.

|  | $J$ | $R(J) / \mathrm{cm}^{-1}$ | $P(J) / \mathrm{cm}^{-1}$ | $R(J)-P(J) / \mathrm{cm}^{-1}$ | $R(J-1)-P(J+1) / \mathrm{cm}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}^{35} \mathrm{Cl}$ | 0 | 2906.4 |  |  |  |
|  | 1 | 2926.03 | 2865.24 | 60.79 | 62.64 |
|  | 2 | 2945.05 | 2843.76 | 101.29 | 104.33 |
|  | 3 | 2963.42 | 2821.70 | 141.72 | 145.98 |
|  | 4 | 2981.14 | 2799.07 | 182.07 | 187.53 |
|  | 5 | 2998.19 | 2775.89 | 222.30 | 228.97 |
|  | 6 | 3014.57 | 2752.17 | 262.40 | 270.26 |
|  | 7 | 3030.27 | 2727.93 | 302.34 | 311.4 |
|  | 8 | 3045.28 | 2703.17 | 342.11 | 352.37 |
|  | 9 | 3059.52 | 2677.90 | 381.62 | 393.13 |
|  | 10 | 3073.10 | 2652.15 | 420.95 | 433.62 |
|  | 11 | 3085.88 | 2625.90 | 459.98 | 473.88 |
|  | 12 |  | 2599.22 |  |  |
| $\mathrm{H}^{37} \mathrm{Cl}$ | 0 | 2904.29 |  |  |  |
|  | 1 | 2923.91 | 2863.20 | 60.71 | 62.53 |
|  | 2 | 2942.90 | 2841.76 | 101.14 | 104.19 |
|  | 3 | 2961.24 | 2819.72 | 141.52 | 145.76 |
|  | 4 | 2978.93 | 2797.14 | 181.79 | 187.25 |
|  | 5 | 2995.96 | 2773.99 | 221.97 | 228.62 |
|  | 6 | 3012.32 | 2750.31 | 262.01 | 269.86 |
|  | 7 | 3027.98 | 2726.10 | 301.88 | 310.95 |
|  | 8 | 3042.97 | 2701.37 | 341.60 | 351.84 |
|  | 9 | 3057.22 | 2676.14 | 381.08 | 392.57 |
|  | 10 | 3070.73 | 2650.40 | 420.33 | 432.99 |
|  | 11 | 3083.51 | 2624.23 | 459.28 | 473.20 |
|  | 12 |  | 2597.53 |  |  |

Table 2: Rotational absorbances for the overtone transition.

|  | $J$ | $R(J) / \mathrm{cm}^{-1}$ | $P(J) / \mathrm{cm}^{-1}$ | $R(J)-P(J) / \mathrm{cm}^{-1}$ | $R(J-1)-P(J+1) / \mathrm{cm}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}^{35} \mathrm{Cl}$ | 0 | 5688.16 |  |  |  |
|  | 1 | 5706.59 | 5647.71 | 58.88 | 62.66 |
|  | 2 | 5723.78 | 5625.50 | 98.28 | 104.35 |
|  | 3 | 5739.75 | 5602.24 | 137.51 | 145.98 |
|  | 4 | 5754.53 | 5577.80 | 176.73 | 187.53 |
|  | 5 | 5767.89 | 5552.22 | 215.67 | 229.05 |
|  | 6 | 5780.07 | 5525.48 | 254.59 | 270.26 |
|  | 7 | 5790.92 | 5497.63 | 293.29 | 311.52 |
|  | 8 |  | 5468.55 |  |  |
| $\mathrm{H}^{37} \mathrm{Cl}$ | 0 | 5684.12 |  |  |  |
|  | 1 | 5703.13 | 5643.60 | 59.53 | 62.58 |
|  | 2 | 5719.67 | 5621.54 | 98.13 | 104.80 |
|  | 3 | 5735.61 | 5598.33 | 137.28 | 145.76 |
|  | 4 | 5750.30 | 5573.91 | 176.39 | 197.19 |
|  | 5 | 5763.27 | 5548.42 | 214.85 | 228.64 |
|  | 6 | 5775.12 | 5521.66 | 253.46 | 269.43 |
|  | 7 | 5786.65 | 5493.84 | 292.81 | 310.49 |
|  | 8 |  | 5464.63 |  |  |

### 1.2 Determination of Rotational Constants

The values of $\tilde{B}_{0}, \tilde{B}_{1}$ and $\tilde{B}_{2}$ were calculated accounting for the centrifugal distortion of the molecules by using equations 1.2.1 and 1.2.2.

$$
\begin{align*}
& R(J)-P(J)=\left(4 \tilde{B}_{1}-6 \tilde{D}_{1}\right)\left(J+\frac{1}{2}\right)-8 \tilde{D}_{1}\left(J+\frac{1}{2}\right)^{3} \\
& \frac{R(J)-P(J)}{J+\frac{1}{2}}=-8 \tilde{D}_{1}\left(J+\frac{1}{2}\right)^{2}+4 \tilde{B}_{1}-6 \tilde{D}_{1} \tag{1.2.1}
\end{align*}
$$

A similar rearrangement for the transitions with a common excited vibrational state yields equation 1.2.2.

$$
\begin{equation*}
\frac{R(J-1)-P(J+1)}{J+\frac{1}{2}}=-8 \tilde{D}_{0}\left(J+\frac{1}{2}\right)^{2}+4 \tilde{B}_{0}-6 \tilde{D}_{0} \tag{1.2.2}
\end{equation*}
$$

Graphs of $\frac{R(J)-P(J)}{J+\frac{1}{2}}$ and respectively $\frac{R(J-1)-P(J+1)}{J+\frac{1}{2}}$ were plotted against $\left(J+\frac{1}{2}\right)^{2}$ and linear regressions were performed in order to determine the values for the centrifugal distortion coefficients, $\tilde{D}_{\nu}$, shown in table 5 and hence the rotational constants, $\tilde{B}_{\nu}$ shown in table 3 .
The bond lengths were then determined from the $\tilde{B}_{\nu}$ values using equation 1.2.3.

$$
\begin{equation*}
r_{\nu}=\sqrt{4 \pi c \hbar \mu \tilde{B}_{\nu}} \tag{1.2.3}
\end{equation*}
$$

The error propagation shown in equation 1.2.4 was completed to estimate the uncertainty in the values of $\tilde{B}_{\nu}$ where $\alpha_{B}, \alpha_{D}, \alpha_{m}$ are the uncertainties in $\tilde{B}_{\nu}, \tilde{D_{\nu}}$ and the gradient found in the linear regression respectively.

$$
\begin{equation*}
\alpha_{B}=\tilde{B}_{\nu} \sqrt{\left(\frac{\alpha_{m}}{m}\right)^{2}+\left(\frac{\alpha_{D}}{\tilde{D}_{\nu}}\right)^{2}} \tag{1.2.4}
\end{equation*}
$$

Table 3: Rotational constants and bond lengths.

|  | $\nu$ | $\tilde{B}_{\nu} / \mathrm{cm}^{-1}$ | $r_{\nu} / \mathrm{pm}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}^{35} \mathrm{Cl}$ | 0 |  |  |
|  | 1 |  |  |
|  | 2 |  |  |
| $\mathrm{H}^{37} \mathrm{Cl}$ | 0 |  |  |
|  | 1 |  |  |
|  | 2 |  |  |

Furthermore the calculus-based approximation ${ }^{1}$ was utilised to give the estimation in the uncertainty for $r_{\nu}\left(\alpha_{r}\right)$ given in equation 1.2.5 since the $\alpha_{B}$ values are small.

$$
\begin{equation*}
\alpha_{r}=\sqrt{\frac{\pi c \hbar \mu}{\tilde{B}_{\nu}}} \alpha_{B} \tag{1.2.5}
\end{equation*}
$$

### 1.3 Determination of Vibrational Constants

The values for the harmonic constant $\tilde{\nu_{e}}$ and the dimensionless anharmonicity constant $x_{e}$ in equation 3.2.1 was determined using equations 1.3.1 and 1.3.2. The derivation of these equations is included within section 3.2 of the supplementary information.

$$
\begin{align*}
\tilde{\nu_{e}} & =R(0)-3 \tilde{B}_{1}+\tilde{B}_{2}  \tag{1.3.1}\\
x_{e} & =\frac{1}{2} \frac{\tilde{B}_{2}-\tilde{B}_{1}}{R(0)-3 \tilde{B}_{1}+\tilde{B}_{2}} \tag{1.3.2}
\end{align*}
$$

The uncertainties in these values was hence estimated using equations 1.3 .3 and 1.3.4 where the uncertainty in $R(0)$ assumed to be negligible since it is determined by reading the wavenumber directly from the spectrum.

$$
\begin{align*}
& \alpha_{\tilde{\nu_{e}}}=\sqrt{\left(3 \alpha_{\tilde{B_{1}}}\right)^{2}+\left(\alpha_{\tilde{B_{1}}}\right)^{2}}  \tag{1.3.3}\\
& \alpha_{x_{e}}=x_{e} \sqrt{\frac{\left(\alpha_{\tilde{B_{1}}}\right)^{2}+\left(\alpha_{\tilde{B_{2}}}\right)^{2}}{\left(\tilde{B_{2}}-\tilde{B_{1}}\right)^{2}}+\left(\frac{\alpha_{\tilde{\nu_{e}}}}{\tilde{\nu_{e}}}\right)^{2}} \tag{1.3.4}
\end{align*}
$$

### 1.4 Determination of Bond Force Constants

The bond force constants, $k$, shown in table 4 were determined using equation 1.4.1 where $\mu$ is the reduced mass of the molecule and the error in $k, \alpha_{k}$, was determined using the calculus approximation (equation 1.4.2) where the error in $\mu$ was assumed negligible compared to that in $\nu_{e}$.

$$
\begin{align*}
k & =4 \pi^{2} c^{2} \mu \tilde{\nu}_{e}^{2}  \tag{1.4.1}\\
\alpha_{k} & =8 \pi^{2} c^{2} \mu \tilde{\nu_{e}} \alpha_{\tilde{\nu_{e}}} \tag{1.4.2}
\end{align*}
$$

Table 4: Force Constants.

|  | $\mathrm{H}^{35} \mathrm{Cl}$ | $\mathrm{H}^{37} \mathrm{Cl}$ |
| :--- | :--- | :--- |
| $\mathrm{k} / \mathrm{N} \mathrm{cm}^{-1}$ |  |  |

## 2 Discussion

Two methods able to be used to determine the value of $\tilde{B}_{0}$ : using either the absorption data from the fundamental or the overtone transition. Much larger signal:noise ratio for overtone due to lower probability of transition, hence greater uncertainty in this value.

## References

(1) I. G. Hughes and T. P. A. Hase, Measurements and their Uncertainties, Oxford University Press, Oxford, 2010.

## 3 Supplementary Information

### 3.1 Centrifugal Distortion Coefficients

Table 5: Centrifugal distortion coefficients.

|  | $\nu$ | $\tilde{D}_{\nu} / 10^{-4} \mathrm{~cm}^{-1}$ |
| :---: | :---: | :---: |
| Cl | 0 | $-5.25 \pm 0.04$ and $-5.4 \pm 0.3$ |
|  | 1 | $-5.11 \pm 0.02$ |
|  | 2 | $-4.3 \pm 0.8$ |
| Cl Cl | 0 | $-5.20 \pm 0.03$ and $-9 \pm 2$ |
|  | 1 | $-5.13 \pm 0.01$ |
|  | 2 | $-11 \pm 4$ |

### 3.2 Derivation of Vibrational Constant Equations

The energies associated with the discrete vibrational energy levels in a molecule are given by equation 3.2.1.

$$
\begin{equation*}
\tilde{E}_{\nu}=\tilde{\nu_{e}}\left(\nu+\frac{1}{2}\right)-\tilde{\nu_{e}} x_{e}\left(\nu+\frac{1}{2}\right)^{2} \tag{3.2.1}
\end{equation*}
$$

From equation 3.2.1 we can obtain the energy related to the pure vibrational transition $\tilde{E}\left(\nu_{f} \leftarrow 0\right)$ (the $\nu=0$ to $\nu=\nu_{f}$ transition) as equation 3.2.2.

$$
\begin{align*}
\tilde{E}\left(\nu_{f} \leftarrow 0\right) & =\tilde{E}_{\nu_{f}}-\tilde{E}_{0} \\
& =\tilde{\nu_{e}}\left(\nu_{f}+\frac{1}{2}-\frac{1}{2}\right)-\tilde{\nu_{e}} x_{e}\left(\frac{1}{4}-\left(\nu_{f}+\frac{1}{2}\right)^{2}\right) \\
& =\tilde{\nu_{e}}\left(\nu_{f}-\left(\nu_{f}^{2}+\nu_{f}\right) x_{e}\right) \tag{3.2.2}
\end{align*}
$$

The energy related to the R branch transitions can be determined to yield equation 3.2 .3 where $J$ is the rotational state adopted in the lower vibrational state $(\nu=0)$.

$$
\begin{equation*}
R(J)=\Delta \tilde{E}\left(\nu_{f} \leftarrow 0\right)+\left(\tilde{B_{\nu_{f}}}+\tilde{B}_{0}\right)(J+1)+\left(\tilde{B_{\nu_{f}}}-\tilde{B}_{0}\right)(J+1)^{2} \tag{3.2.3}
\end{equation*}
$$

Setting $J=0$ hence gives equation 3.2.4.

$$
\begin{equation*}
R(J)-2 \tilde{B_{\nu_{f}}}=\Delta \tilde{E}\left(\nu_{f} \leftarrow 0\right) \tag{3.2.4}
\end{equation*}
$$

Substituting equation 3.2.2 into equation 3.2.4 yields equation 3.2.5.

$$
\begin{equation*}
R(0)-2 \tilde{B_{\nu_{f}}}=\tilde{\nu_{e}}\left(\nu_{f}-\left(\nu_{f}^{2}+\nu_{f}\right) x_{e}\right) \tag{3.2.5}
\end{equation*}
$$

Now from equation 3.2.5 a system of linear equations can be obtained by setting $\nu_{f}=1$ and $\nu_{f}=2$ (equations 3.2.6 and 3.2.7).

$$
\begin{align*}
& R(0)-2 \tilde{B_{1}}=\tilde{\nu_{e}}\left(1-2 x_{e}\right)  \tag{3.2.6}\\
& R(0)-2 \tilde{B_{2}}=\tilde{\nu_{e}}\left(1-6 x_{e}\right) \tag{3.2.7}
\end{align*}
$$

Solving equations 3.2.6 and 3.2.7 for $\tilde{\nu_{e}}$ and $x_{e}$ then gives equations 1.3.1 and 1.3.2.

