Experiment 4B: The rotational-vibrational spectrum of HCl

Sam White (Author) and Emma Winful (Laboratory Partner)

30/11/2018

Abstract

Experiment abstract.

1 Results and Analysis

Table 1: Rotational absorbances for the fundamental transition.

	J	$R(J) \ / \ { m cm}^{-1}$	$P(J) \ / \ { m cm}^{-1}$	$R(J) - P(J) / \text{cm}^{-1}$	$R(J-1) - P(J+1) / \text{cm}^{-1}$
H ³⁵ Cl	0	2906.4			
	1	2926.03	2865.24	60.79	62.64
	2	2945.05	2843.76	101.29	104.33
	3	2963.42	2821.70	141.72	145.98
	4	2981.14	2799.07	182.07	187.53
	5	2998.19	2775.89	222.30	228.97
	6	3014.57	2752.17	262.40	270.26
	7	3030.27	2727.93	302.34	311.4
	8	3045.28	2703.17	342.11	352.37
	9	3059.52	2677.90	381.62	393.13
	10	3073.10	2652.15	420.95	433.62
	11	3085.88	2625.90	459.98	473.88
	12		2599.22		
	0	2904.29			
	1	2923.91	2863.20	60.71	62.53
	2	2942.90	2841.76	101.14	104.19
H ³⁷ Cl	3	2961.24	2819.72	141.52	145.76
	4	2978.93	2797.14	181.79	187.25
	5	2995.96	2773.99	221.97	228.62
	6	3012.32	2750.31	262.01	269.86
	7	3027.98	2726.10	301.88	310.95
	8	3042.97	2701.37	341.60	351.84
	9	3057.22	2676.14	381.08	392.57
	10	3070.73	2650.40	420.33	432.99
	11	3083.51	2624.23	459.28	473.20
	12		2597.53		

The values of \tilde{B}_0 , \tilde{B}_1 and \tilde{B}_2 were calculated accounting for the centrifugal distortion of the molecules by using equations 1.0.1 and 1.0.2.

$$R(J) - P(J) = (4\tilde{B}_1 - 6\tilde{D}_1)(J + \frac{1}{2}) - 8\tilde{D}_1(J + \frac{1}{2})^3$$
$$\frac{R(J) - P(J)}{J + \frac{1}{2}} = -8\tilde{D}_1(J + \frac{1}{2})^2 + 4\tilde{B}_1 - 6\tilde{D}_1$$
(1.0.1)

A similar rearrangement for the transitions with a common excited vibrational state yields equation 1.0.2.

	J	$R(J) \ / \ {\rm cm}^{-1}$	$P(J) \ / \ {\rm cm}^{-1}$	$R(J) - P(J) / \text{cm}^{-1}$	$R(J-1) - P(J+1) / \text{cm}^{-1}$
H ³⁵ Cl	0	5688.16			
	1	5706.59	5647.71	58.88	62.66
	2	5723.78	5625.50	98.28	104.35
	3	5739.75	5602.24	137.51	145.98
	4	5754.53	5577.80	176.73	187.53
	5	5767.89	5552.22	215.67	229.05
	6	5780.07	5525.48	254.59	270.26
	7	5790.92	5497.63	293.29	311.52
	8		5468.55		
H ³⁷ Cl	0	5684.12			
	1	5703.13	5643.60	59.53	62.58
	2	5719.67	5621.54	98.13	104.80
	3	5735.61	5598.33	137.28	145.76
	4	5750.30	5573.91	176.39	197.19
	5	5763.27	5548.42	214.85	228.64
	6	5775.12	5521.66	253.46	269.43
	7	5786.65	5493.84	292.81	310.49
	8	5464.63			

Table 2: Rotational absorbances for the overtone transition.

$$\frac{R(J-1) - P(J+1)}{J + \frac{1}{2}} = -8\tilde{D}_0(J + \frac{1}{2})^2 + 4\tilde{B}_0 - 6\tilde{D}_0$$
(1.0.2)

Graphs of $\frac{R(J)-P(J)}{J+\frac{1}{2}}$ and respectively $\frac{R(J-1)-P(J+1)}{J+\frac{1}{2}}$ were plotted against $(J+\frac{1}{2})^2$ and linear regressions were performed in order to determine the values for the centrifugal distortion coefficients, \tilde{D}_{ν} , shown in table 4 and hence the rotational constants, \tilde{B}_{ν} shown in table 3.

The bond lengths were calculated from the \tilde{B}_{ν} values using equation 1.0.3.

$$r_{\nu} = \sqrt{4\pi c\hbar\mu \tilde{B}_{\nu}} \tag{1.0.3}$$

Table 3: Rotational constants and bond lengths.

	ν	$\tilde{B_{\nu}}$ / cm ⁻¹	r_{ν} / pm
	0		
³⁵ Cl	1		
	2		
	0		
³⁷ Cl	1		
	2		

The error propagation shown in equation 1.0.4 was completed to estimate the uncertainty in the values of \tilde{B}_{ν} where α_B , α_D , α_m are the uncertainties in \tilde{B}_{ν} , \tilde{D}_{ν} and the gradient found in the linear regression respectively.

$$\alpha_B = \tilde{B}_{\nu} \sqrt{\left(\frac{\alpha_m}{m}\right)^2 + \left(\frac{\alpha_D}{\tilde{D}_{\nu}}\right)^2} \tag{1.0.4}$$

Furthermore the calculus-based approximation¹ was utilised to give the estimation in the uncertainty for r_{ν} (α_r) given in equation 1.0.5 since the α_B values are small.

$$\alpha_r = \sqrt{\frac{\pi c \hbar \mu}{\tilde{B}_\nu}} \alpha_B \tag{1.0.5}$$

1.1 Determination of Vibrational Constants

The values for the harmonic constant $\tilde{\nu}_e$ and the dimensionless anharmonicity constant x_e in equation 1.1.1 (which gives the expected vibrational energy levels if the rotational spectrum is ignored).

$$\tilde{E}_{\nu} = \tilde{\nu}_e \left(\nu + \frac{1}{2}\right) - \tilde{\nu}_e x_e \left(\nu + \frac{1}{2}\right)^2 \tag{1.1.1}$$

From equation 1.1.1 we can obtain the energy related to the pure vibrational transition $\dot{E}(\nu_f \leftarrow 0)$ (the $\nu = 0$ to $\nu = \nu_f$ transition) as equation 1.1.2.

$$\tilde{E}\left(\nu_{f} \leftarrow 0\right) = \tilde{E}_{\nu_{f}} - \tilde{E}_{0}$$

$$= \tilde{\nu}_{e}\left(\nu_{f} + \frac{1}{2} - \frac{1}{2}\right) - \tilde{\nu}_{e}x_{e}\left(\frac{1}{4} - \left(\nu_{f} + \frac{1}{2}\right)^{2}\right)$$

$$= \tilde{\nu}_{e}\left(\nu_{f} - \left(\nu_{f}^{2} + \nu_{f}\right)x_{e}\right)$$
(1.1.2)

The energy related to the R branch transitions can be determined to yield equation 1.1.3 where J is the rotational state adopted in the lower vibrational state ($\nu = 0$).

$$R(J) = \Delta \tilde{E}(\nu_f \leftarrow 0) + (\tilde{B}_{\nu_f} + \tilde{B}_0)(J+1) + (\tilde{B}_{\nu_f} - \tilde{B}_0)(J+1)^2$$
(1.1.3)

Setting J = 0 hence gives equation 1.1.4.

$$R(J) - 2\tilde{B_{\nu_f}} = \Delta \tilde{E}(\nu_f \leftarrow 0) \tag{1.1.4}$$

Substituting equation 1.1.2 into equation 1.1.4 yields equation 1.1.5.

$$R(0) - 2\tilde{B}_{\nu_f} = \tilde{\nu}_e \left(\nu_f - \left(\nu_f^2 + \nu_f \right) x_e \right)$$
(1.1.5)

Now from equation 1.1.5 a system of linear equations can be obtained by setting $\nu_f = 1$ and $\nu_f = 2$ (equations xx and xx) for which we can solve to give equations xx and xx.

for which setting J = 0 and $\nu_f = 1$ and subsequently $\nu_f = 2$ gives the system of linear equations (equations xx and xx) for which we can solve to give equations xx and xx.

2 Discussion

Two methods able to be used to determine the value of \tilde{B}_0 : using either the absorption data from the fundamental or the overtone transition. Much larger signal:noise ratio for overtone due to lower probability of transition, hence greater uncertainty in this value.

References

(1) I. G. Hughes and T. P. A. Hase, Measurements and their Uncertainties, Oxford University Press, Oxford, 2010.

3 Supplementary Information

	ν	$\tilde{D_{\nu}} / 10^{-4} \text{ cm}^{-1}$
	0	-5.25 ± 0.04 and -5.4 ± 0.3
³⁵ Cl	1	-5.11 ± 0.02
	2	-4.3 ± 0.8
	0	-5.20 ± 0.03 and -9 ± 2
³⁷ Cl	1	-5.13 ± 0.01
	2	-11 ± 4

Table 4: Centrifugal distortion coefficients.