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Abstract

The rotational constants, B̃ν, were determined for both common isotopologues of HCl gas and
hence the bond force constants, k. The rotational constants for H35Cl were in agreement with published
values and the bond force constants found were 477.383± 0.001 N m−1 and 480.698± 0.006 N m−1

for H35Cl and H37Cl respectively. The bond force constants are not identical within reasonable errors,
hence it is likely that the isotopic mass effects the value of k, however additional data should be collected
to verify this.

1 Results and Analysis

1.1 Collected Data

Table 1: Rotational-vibrational absorbance wavelengths for the fundamental transition bands.

J R(J) / cm−1 P(J) / cm−1 R(J)− P(J) / cm−1 R(J − 1)− P(J + 1) / cm−1

H35Cl

0 2906.4
1 2926.03 2865.24 60.79 62.64
2 2945.05 2843.76 101.29 104.33
3 2963.42 2821.70 141.72 145.98
4 2981.14 2799.07 182.07 187.53
5 2998.19 2775.89 222.30 228.97
6 3014.57 2752.17 262.40 270.26
7 3030.27 2727.93 302.34 311.4
8 3045.28 2703.17 342.11 352.37
9 3059.52 2677.90 381.62 393.13
10 3073.10 2652.15 420.95 433.62
11 3085.88 2625.90 459.98 473.88
12 2599.22

H37Cl

0 2904.29
1 2923.91 2863.20 60.71 62.53
2 2942.90 2841.76 101.14 104.19
3 2961.24 2819.72 141.52 145.76
4 2978.93 2797.14 181.79 187.25
5 2995.96 2773.99 221.97 228.62
6 3012.32 2750.31 262.01 269.86
7 3027.98 2726.10 301.88 310.95
8 3042.97 2701.37 341.60 351.84
9 3057.22 2676.14 381.08 392.57
10 3070.73 2650.40 420.33 432.99
11 3083.51 2624.23 459.28 473.20
12 2597.53
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Table 2: Rotational-vibrational absorbance wavelengths for the overtone transition bands.

J R(J) / cm−1 P(J) / cm−1 R(J)− P(J) / cm−1 R(J − 1)− P(J + 1) / cm−1

H35Cl

0 5688.16
1 5706.59 5647.71 58.88 62.66
2 5723.78 5625.50 98.28 104.35
3 5739.75 5602.24 137.51 145.98
4 5754.53 5577.80 176.73 187.53
5 5767.89 5552.22 215.67 229.05
6 5780.07 5525.48 254.59 270.26
7 5790.92 5497.63 293.29 311.52
8 5468.55

H37Cl

0 5684.12
1 5703.13 5643.60 59.53 62.58
2 5719.67 5621.54 98.13 104.80
3 5735.61 5598.33 137.28 145.76
4 5750.30 5573.91 176.39 197.19
5 5763.27 5548.42 214.85 228.64
6 5775.12 5521.66 253.46 269.43
7 5786.65 5493.84 292.81 310.49
8 5464.63

1.2 Determination of Rotational Constants and Bond Lengths

The values of the rotational constants B̃0, B̃1 and B̃2 were calculated accounting for the centrifugal distortion
of the molecules by plotting graphs of R(J)−P(J)

J+1
2

and R(J−1)−P(J+1)

J+1
2

against (J+ 1
2)2 and performing linear

regressions (as shown in figures 1 and 2). This was completed since if combination differences between
the R(J) and P(J) and then the R(J − 1) and P(J + 1) bands are taken and the centrifugal distortion
accounted for the resultant equations can be re-arranged to give equations 1.2.1 and 1.2.2 respectively,
where D̃ν are the centrifugal distortion coefficients. These equations are in the form of the general equation
of a straight line, y = mx+ c, hence the plotted data can be fitted by a function of this form.

R(J)− P(J)

J + 1
2

= −8D̃1(J +
1

2
)2 + 4B̃1 − 6D̃1 (1.2.1)

R(J − 1)− P(J + 1)

J + 1
2

= −8D̃0(J +
1

2
)2 + 4B̃0 − 6D̃0 (1.2.2)

The values of D̃ν were then determined (see table 6 in the supplementary information) and hence the
rotational constants, B̃ν, shown in table 3 were calculated. The error propagation shown in equation 1.2.3
was then completed to estimate the uncertainties in B̃ν, where αB̃ν , αm and αc are the uncertainties in

B̃ν, the gradient of the fitted line and the intercept respectively.

αB̃ν =

√(
3

16
αm

)2

+

(
1

4
αc

)2

(1.2.3)

The literature values of B̃ν for H35Cl in table 3 were determined using published equilibrium rotational
constant, B̃e, and rotational constant parameter, αe, values1 with equation 1.2.4.

B̃νLit. = B̃e − αe
(
ν +

1

2

)
(1.2.4)

2



Figure 1: Graph showing the linear regression performed for the upper rotational (R) branch of the
fundamental transition in H35Cl.

Figure 2: Graph showing the linear regression performed for the upper rotational (R) branch for the
overtone transition in H35Cl.

The bond lengths in table 3 were determined from the B̃ν values using equation 1.2.5. Furthermore the
calculus-based approximation2 was utilised to propagate the uncertainties in B̃ν for rν (αrν) as the αB̃ν
values are small hence producing equation 1.2.6. The uncertainties in the values of the constants and
reduced mass used3 are insignificant compared to that of αB̃ν , and hence they were excluded from the
error propagation.
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rν =

√
h

8π2cµB̃ν
(1.2.5)

αrν =
1

2

√
h

8π2cµB̃ν
3αB̃ν (1.2.6)

Table 3: Rotational constants and bond lengths.

ν B̃ν / cm−1 B̃νLit. / cm−1 rν / pm

H35Cl
0 10.4408± 0.0004 10.439 82 128.823± 0.002
1 10.1360± 0.0002 10.132 64 130.745± 0.001
2 9.829± 0.004 9.825 46 132.77± 0.02

H37Cl
0 10.4248± 0.0003 128.385± 0.002
1 10.1214± 0.0001 130.2953± 0.0009
2 9.86± 0.02 132.0± 0.1

1.3 Determination of Vibrational Constants

The harmonic constant, ν̃e, and the anharmonicity constant, xe, in table 4 were determined using equations
1.3.1 and 1.3.2. The derivation method of these equations is included in section 3.2 within the supplementary
information.

ν̃e = R(0)− 3B̃1 + B̃2 (1.3.1)

xe =
1

2

B̃2 − B̃1

R(0)− 3B̃1 + B̃2

(1.3.2)

The uncertainties in these values was estimated using equations 1.3.3 and 1.3.4 with the uncertainty in R(0)
excluded from the propagation as it is negligible compared to that in B̃1 and B̃2 since it is determined
by reading the absorption wavenumber directly from the spectrum.

αν̃e =

√(
3αB̃1

)2
+
(
αB̃2

)2
(1.3.3)

αxe = xe

√√√√√√
(
αB̃1

)2
+
(
αB̃2

)2
(
B̃2 − B̃1

)2 +

(
αν̃e
ν̃e

)2

(1.3.4)

Table 4: Vibrational Coefficients.

H35Cl H37Cl

ν̃e / cm−1 2885.821± 0.004 2883.78± 0.02

xe / 10−5 −5.32± 0.06 −4.5± 0.3

1.4 Determination of Bond Force Constants

The bond force constants, k, in table 5 were determined using equation 1.4.1 and the error in k, αk, was
determined using equation 1.4.2 (derived using the calculus-based approximation). The errors in µ and
the constants were again not considered as they are negligible compared to that of νe.
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k = 4π2c2µν̃e
2 (1.4.1)

αk = 8π2c2µν̃eαν̃e = 8π2c2µν̃e

√(
3αB̃1

)2
+
(
αB̃2

)2
(1.4.2)

Table 5: Force Constants.

H35Cl H37Cl

k / N m−1 477.383± 0.001 480.698± 0.006

2 Discussion

2.1 Errors and Analysis Method

It is likely that the errors used for the data collected are underestimates since they are derived from
linear regressions performed with a limited number of data points (less than 12). Furthermore while
the linear regression was (in general) good for the data obtained for fundamental transitions (χ2 =
2× 10−5–2× 10−4 ) it was much poorer for data derived from the overtone transition (χ2 = 4× 10−4–0.2 ).
This was due to the considerable signal:noise ratio on the spectrum for the overtone transition resulting
in the data being significantly effected by random noise (as can be seen in figure 2) and hence the true
uncertainty in these values is likely to be even greater.

There is a high signal:noise ratio for the data from the overtone transition compared to that of the
fundamental due to the lower overtone transition probability as the transition is forbidden by the ∆ν = ±1
selection rule for a purely harmonic potential and while the oscillator in anharmonic it still has considerable
harmonic character. This signal:noise ratio could be reduced by recording additional spectra for just
the overtone region (6000–5000 cm−1) with a greater concentration of HCl in the gas cell. The reduced
wavenumber range should be used since the increased concentration will also increase the intensity of the
fundamental transition peaks and will cause them to be ’cut’ hence preventing a distinct wavenumber
from being recorded for the fundamental transition absorption peak.

In the data analysis the centrifugal distortion was accounted for since when it was ignored the linear
regression produced residuals which were clearly not randomly distributed hence suggesting the presence
of a systematic error. When the centrifugal distortion was accounted for the residual plot showed a more
random distribution.

2.2 Data

2.2.1 Rotational Constants

The value of B̃0 could have been obtained by considering either the fundamental or overtone transition.
The value tabulated in table 3 was derived from the fundamental transition since less random noise affected
the values for the fundamental transition (as discussed in section 2.1, hence using only this transition
reduced the random errors in the value determined.

It was expected that the values of B̃ν for H35Cl should be larger than the corresponding values for H37Cl due
to the greater reduced mass of the H37Cl isotopologue making the B̃ν value larger by equation 2.2.1.

B̃ν =
h

8π2cµr2
(2.2.1)

The obtained data (presented in table 3) supports this since all values of B̃ν calculated for H35Cl are
greater than the corresponding values for H37Cl except for the B̃2 value where this condition can be
satisfied with a probability of 6.06 % (calculated by assuming a normal distribution around the data point
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and normalising). As discussed in section 2.1 it is likely the errors used are underestimates hence the
agreement of this datum with the expected result is likely to be stronger than this.

The data for B̃ν in table 3 all agree with the literature values, B̃νLit., within ±0.004 cm−1. While this
is one order of magnitude greater than the estimated uncertainties in all values (except for B̃2) it is likely
that the obtained data does agree with these literature values, however (as discussed in section 2.1) the
uncertainties stated are underestimates.

In order to obtain better estimates of the uncertainties for the rotational constants additional spectra
could be recorded hence allowing a better estimation of the uncertainty in the calculated values based
any differences which arise between the data sets collected. This will also help suggest the reproducibility
of the collected data.

2.2.2 Bond Lengths

It was also expected that the bond length (rν) values for both isotopologues would increase as the vibrational
energy level (ν) increased since the anharmonicity of the bond potential results in the mean bond length
increasing as the vibrational energy level increases. All of the values of rν obtained in table 3 agree with
this.

In table 3 it can also be seen that the bond lengths of the H37Cl isotopologue in each vibrational state
are greater than for the H35Cl isotopologue. This is the expected result since from the one dimensional
time-independent Schrödinger equation (equation 2.2.2) it can be seen that for the same potential function
V (x) (assumed since the chemical bonding should identical for both isotopologues) and molecular (sta-
tionary) states described by ψν the energy of the state labelled by ν will decrease for an increased reduced
mass. Hence from the asymmetry of the anharmonic bond potential the H37Cl isotopologue should have
a lower mean bond length in each vibrational state.

Eνψν = Ĥψν

=

(
p̂2

2µ
+ V (x)

)
ψν (2.2.2)

2.2.3 Bond Force Constants

It was expected that the bond force constants, k, displayed in table 5 should be equal for both isotopologues
as it was assumed that k depends only on the chemical bonding and hence should be the same for both
isotopologues.

Despite this the force constants differ by 3.315 N m−1 while both values have very small uncertainties of the
order of 1× 10−3. It is unlikely that an underestimation of the uncertainties in the B̃0 and B̃1 values can ex-
plain this difference since if the uncertainties in the B̃0 and B̃1 values for both isotopologues are increased by a
factor of ten (this would hence give good agreement between the B̃0 and B̃1 values for H35Cl and the literature
values) then when this is propagated the uncertainty in the bond constants also increases by slightly more than
a factor of ten. This results in a difference between the bond constants of over 500 standard deviations.

It is considered unlikely that a systematic error could result in the difference between the calculated bond
force constants since both were obtained from taking differences between values on the spectrum (which
should remove systematic errors) and both values were obtained from the same spectrum thus removing
the influence of any calibration errors.

It is possible that the mass of a molecule affects the bond force constant in an indirect way as concluded by
Biernacki and Clerjaud for the SiH4 and SiD4 isotopologues.4 In order to confirm this with more confidence
more spectra should be recorded of the overtone and fundamental transitions (as discussed in 2.1 and
2.2.1). In addition to this further spectra could be obtained for deuterated hydrogen chloride gas, DCl,
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since this will increase the reduced mass by almost a factor of two, hence should result in an even larger
difference in the bond force constants.
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3 Supplementary Information

3.1 Centrifugal Distortion Coefficients

The values of the centrifugal distortion coefficients, D̃ν, were determined from the gradient found by
completing linear regressions.

Table 6: Centrifugal distortion coefficients.

ν D̃ν / 10−4 cm−1

35Cl
0 5.25± 0.04 and 5.4± 0.3
1 5.11± 0.02
2 4.3± 0.8

37Cl
0 5.20± 0.03 and 9± 2
1 5.13± 0.01
2 11± 4

3.2 Derivation of Vibrational Constant Equations

The energies associated with the discrete vibrational energy levels in a molecule are given by equation
3.2.1 which can be found through the application of perturbation theory on the harmonic potential with
the perturbation of the potential including terms a of higher order than two from the Taylor expansion
of the potential energy.

Ẽν = ν̃e

(
ν +

1

2

)
− ν̃exe

(
ν +

1

2

)2

(3.2.1)

From equation 3.2.1 we can obtain the energy related to the pure vibrational transition Ẽ(νf ← 0) (the
ν = 0 to ν = νf transition) as equation 3.2.2.

Ẽ (νf ← 0) = Ẽνf − Ẽ0

= ν̃e

(
νf +

1

2
− 1

2

)
− ν̃exe

(
1

4
−
(
νf +

1

2

)2
)

= ν̃e
(
νf −

(
ν2f + νf

)
xe
)

(3.2.2)

The energy related to the R branch transitions can be determined to yield equation 3.2.3 where J is the
rotational state adopted in the lower vibrational state (ν = 0).

R(J) = ∆Ẽ(νf ← 0) + (B̃νf + B̃0)(J + 1) + (B̃νf − B̃0)(J + 1)2 (3.2.3)

Setting J = 0 hence gives equation 3.2.4.
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R(J)− 2B̃νf = ∆Ẽ(νf ← 0) (3.2.4)

Substituting equation 3.2.2 into equation 3.2.4 yields equation 3.2.5.

R(0)− 2B̃νf = ν̃e
(
νf −

(
ν2f + νf

)
xe
)

(3.2.5)

Now from equation 3.2.5 a system of linear equations can be obtained by setting νf = 1 and νf = 2
(equations 3.2.6 and 3.2.7).

R(0)− 2B̃1 = ν̃e (1− 2xe) (3.2.6)

R(0)− 2B̃2 = ν̃e (1− 6xe) (3.2.7)

Solving equations 3.2.6 and 3.2.7 for ν̃e and xe then gives equations 1.3.1 and 1.3.2.
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