From: Sam W Date: Sat, 1 Dec 2018 17:47:42 +0000 (+0000) Subject: Continued writing experiment 4B report. X-Git-Url: https://git.dalvak.com/public/?a=commitdiff_plain;h=023bc59c958e8ba28c16702badba4566668b7d24;p=chemistry%2Funiversity-chemistry-lab-reports.git Continued writing experiment 4B report. --- diff --git a/year2/4b/4b.pdf b/year2/4b/4b.pdf index 343ceb4..b12f13c 100644 Binary files a/year2/4b/4b.pdf and b/year2/4b/4b.pdf differ diff --git a/year2/4b/4b.tex b/year2/4b/4b.tex index b54e224..6e6fe13 100644 --- a/year2/4b/4b.tex +++ b/year2/4b/4b.tex @@ -224,15 +224,61 @@ Furthermore the calculus-based approximation\autocite{hughes-hase-uncertainties} \alpha_r = \sqrt{\frac{\pi c \hbar \mu}{\tilde{B_{\nu}}}} \alpha_B \end{equation} +\subsection{Determination of Vibrational Constants} + The values for the harmonic constant $\tilde{\nu_e}$ and the dimensionless anharmonicity constant $x_e$ in equation \ref{eq:vib-energy} (which gives the expected vibrational energy levels if the rotational spectrum is -ignored) can be determined by +ignored). \begin{equation}\label{eq:vib-energy} \tilde{E_{\nu}} = \tilde{\nu_e} \left( \nu + \frac{1}{2} \right) - \tilde{\nu_e} x_e \left( \nu + \frac{1}{2} \right)^2 \end{equation} +From equation \ref{eq:vib-energy} we can obtain the energy related to the pure vibrational transition +$\tilde{E}(\nu_f \leftarrow 0)$ (the $\nu = 0$ to $\nu = \nu_f$ transition) as equation \ref{eq:delta-e-coeff}. + +\begin{align} + \tilde{E}\left( \nu_f \leftarrow 0 \right) &= \tilde{E}_{\nu_f} - \tilde{E}_0 \nonumber \\ + &= \tilde{\nu_e}\left( \nu_f + \frac{1}{2} - \frac{1}{2} \right) - \tilde{\nu_e} x_e \left( + \frac{1}{4} - \left( \nu_f + \frac{1}{2} \right)^2 \right) \nonumber \\ + \label{eq:delta-e-coeff} + &= \tilde{\nu_e} \left( \nu_f - \left( \nu_f^2 + \nu_f \right) x_e \right) +\end{align} + +The energy related to the R branch transitions can be determined to yield +equation \ref{eq:r-trans-energy} where $J$ is the rotational state adopted in +the lower vibrational state ($\nu = 0$). + +\begin{equation}\label{eq:r-trans-energy} + R(J) = \Delta \tilde{E}(\nu_f \leftarrow 0) + (\tilde{B_{\nu_f}} + \tilde{B_0}) (J + 1) + (\tilde{B_{\nu_f}} - + \tilde{B_0}) ( J + 1)^2 +\end{equation} + +Setting $J = 0$ hence gives equation \ref{eq:r-trans-energy-j0}. + +\begin{equation}\label{eq:r-trans-energy-j0} + R(J) - 2 \tilde{B_{\nu_f}} = \Delta \tilde{E}(\nu_f \leftarrow 0) +\end{equation} + +Subsituting equation \ref{eq:delta-e-coeff} into equation \ref{eq:r-trans-energy-j0} yields equation +\ref{eq:r-trans-energy-sub}. + +\begin{equation}\label{eq:r-trans-energy-sub} + R(0) - 2 \tilde{B_{\nu_f}} = \tilde{\nu_e} \left( \nu_f - \left( \nu_f^2 + \nu_f \right) x_e \right) +\end{equation} + +Now from equation \ref{eq:r-trans-energy-sub} a system of linear equations can be +obtained by setting $\nu_f = 1$ and $\nu_f = 2$ (equations xx and xx) for which we can solve to give equations xx and xx. + + + + + + +for which setting $J = 0$ and $\nu_f = 1$ and subsequently $\nu_f = 2$ gives the +system of linear equations (equations xx and xx) for which we can solve to give equations xx and xx. + %TODO: Total energy equation, determination of \nu_e x_e, calculation of values, determination of k with error %propagation and table.